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I wish to discuss several of the important steps in the development of the 
theory of solutions of non-electrolytes with special reference to their ther- 
modynamic corollaries. We will begin, of course, with the mention of 
Raoult’s law. This rests historically upon an experimental foundation; 
however, its theoretical basis is now clear and so simple that anyone should 
be able to understand it and to see the conditions under which actual 
systems should approximate thereto (6, 15, 23). Its thermodynamic 
implications have, for the most part, been thoroughly set forth. There is 
only one minor, but nevertheless interesting, addition I wish to make here. 
If the partial vapor pressure of a component of a binary mixture is expressed 
as proportional to its volume concentration instead of its mole fraction, as 
in Raoult’s law, the application of the Gibbs equation1 connecting the 
partial molal free energies of the two components of a mixture shows that 
the molal volumes of the two components must be equal, in which case the 
volume concentration reduces to the mole fraction of Raoult’s law. This 
means that volume concentration can satisfy the Gibbs equation only in 
the special case that it is identical with mole fraction, whereas the latter is 
always consistent therewith. 

Earlier attempts to treat concentrated solutions on the basis of osmotic 
pressure formulae have been abandoned (1, 8, 14, 19) by all who have 
taken the trouble to inform themselves regarding the more adequate 
methods now available. 

The majority of systems do not satisfy the condition of equal molecular 
fields required for obedience to Raoult’s law and a more general treatment 
is necessary. The success of van der Waals in setting up an approximate 
equation of state naturally invited its extension to mixtures. The energy 
of a mixture of n1 + nz moles according to this theory should be given by 
the expression (n:a, + 2nlnza~ + niaz)/(nlbl + nzbz), where a and b are 

This equation is usually known as the Duhem-Margules Equation, but should be 
credited to  Gibbs, unless special forms of i t  are regarded as worthy to  bear another 
name. 
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the usual “constants” of the van der Waals equation, the subscripts refer- 
ring to the pure components and the mixture, respectively. This was 
applied by van Laar (19, 2 0 ,  2 1 )  to  yield the following expression for the 
partial vapor pressure of a component of a binary solution. 

RT In (PI/P:N,) = a ~ : / ( l  + r ~ 2 ) ~  

where 

and 
= (alb; - 2alzblbz + hb:)/b: 

T = (b2 - bl)/bl 

Sometimes v1 and v2 were substituted for bl and b2, respectively. (Actu- 
ally v is often 25 per cent greater than b.)  The “derivation” of this equa- 
tion is not easy to follow; some of the steps seem to be assumed rather than 
derived, and the molal volume is interchanged ad libitum with the “con- 
stant” b;  the notation is not always clearly defined and moles and mole 
fractions are not clearly distinguished. The derivation was patched up 
and presumably improved, however, each of the many times it was re- 
peated in the series of papers. Experimental tests were fragmentary and 
usually confined to citing systems which show qualitative agreement with 
the theory. I t  was concluded that equality of critical pressures was the 
criterion for ideal behavior of a solution. This is not only comparatively 
useless but often untrue. Anyone familiar with the shortcomings of the 
van der Waals equation for a pure substance could hardly feel great confi- 
dence in the validity of this treatment by van Laar in which good thermo- 
dynamics was scrambled intimately with an inadequate equation of state. 
The result turned out far better than could be expected, as we shall show 
later. 

Dolezalek (3) and many others have attributed all deviations from 
Raoult’s law to ‘(chemical”. changes alone-association and solvation-but 
although such equilibria often exist it is just as naive to attribute all devia- 
tions to this cause as it would be to attribute all deviations from the perfect 
gas laws to chemical equilibria to the neglect of non-valence intermolecular 
forces and the effects of molecular volumes. 

The above equation of van Laar simplifies to 

RT In y1 = CKN: 

in the special case that bl = b2 (or v1 = v2). We have substituted the 
activity coefficient, y l ,  for p l / p ; ~ ~ .  This equation was also derived by 
Heitler (5) without the aid of an equation of state, by assuming the struc- 
ture of the liquid to be a simple cubic lattice in which the two molecular 
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species are interchangeable. The term N: arises from a consideration of 
the frequency with which adjacent molecules are made up of the respective 
combinations, 1-1, 1-2, and 2-2. This derivation is not as convincing as it 
would be if i t  did not depend upon a model so highly artificial and did not 
involve the assumption that the volumes of the two molecular species are 
equal. 

Work has proceeded in our laboratory over a period of years to amass 
experimental data involving non-polar, symmetrical molecules having 
molecular fields of widely different strength, as indicated by various 
criteria. It was soon evident that, in the absence of specific valence or 
polar forces, differences in the field strengths or “internal pressures” give 
rise to corresponding positive deviations from ideal solubility relations. 
Moreover, there was an unmistakable regularity of behavior as shown by 
the temperature coefficients of the solubility curves for many of these 
highly imperfect or non-ideal solutions. The explanation suggested itself 
that  in these solutions the thermal agitation is sufficient to overcome the 
segregating effect of unequal molecular fields and give, at  least approxi- 
mately, the same randomness of mixing as would exist in an ideal solution, 
where the molecular fields are equal. The interpretation of randomness 
in terms of entropy suggested that the above statement might be formally 
expressed as ST = sf when N: = N:, that is, the partial molal entropy of 
a component of a regular solution is the same as it would be in an ideal 
solution of the same composition. The latter is known, being given by 

. 

--i s1 = - R l n ~ ~  

There are a number of interesting thermodynamic consequences of this 
definition which have been set forth elsewhere (7). 

Scatchard (18) utilized this concept, together with a certain formulation 
of the “cohesive energy” of a mole of mixture, to arrive at  a formula with- 
out involving the van der Waals equation. He says, “For non-ideal solu- 
tions also we shall neglect the change in volume and we shall consider only 
the case in which the interaction between any pair of molecules is inde- 
pendent of the composition. We may then split the cohesive energy of a 
mole of the mixture in the following way 

u, = (al1v:zT + 212av1v2~2 + a~2v~d) / (v lx l  + ~2x2) 

where the a’s are constants” (and the x’s mole fractions). “For the pure 
components UI = allv1 and u2 = a22v2, so that all and aZ2 are the cohesive 
energy densities of the components.” The a’s in this formulation are not, 
of course, constant over a range of temperature, but merely characteristic 
functions of each liquid a t  a given temperature. They are not the van der 
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Waals a’s, which are, theoretically at least, given by the relation u = a/v, 
so that a = u/v2. If we make this substitution in the above equation, we 
arrive at  the same formula used by van Lam. 

Meanwhile, we have been endeavoring to make a more rigorous study 
of the problem on a statistical basis. The method of Heitler was extended 
to cover any lattice arrangement in connection with a problem involving 
molten salt solutions (10). The “probability function,” W ,  used by Prins 
(17), Zernike (24), and Debye and Menke (2, 16; see also 13) to express the 
structure of a liquid in terms of radial distribution then supplied the means 
for extending the proof to liquids, yielding the equation (11) 

AE‘ = 2* [n: / W,lellr2dr + n: / W22e22r2dr + 2n,n2 WI2el2r2dr 
V J l  

where N is the Avogadro number and the e’s are the intermolecular poten- 
tials. In  the absence of more exact knowledge of some of its terms certain 
assumptions had to be made in order to subject it to certain experimental 
verification, the results of which, however, have turned out to be remark- 
ably satisfactory (9). The simplified approximation formula is 

which, surprisingly enough, turned out to be identical with the formula of 
van Laar, provided v’s are used in place of b’s and AE = a/v. The 
term, AE, denotes energy of vaporization, N is mole fraction, and y the 
activity coefficient referred to the pure liquid as the standard state. 

Guggenheim (4) has recently published an interesting paper on the 
subject of the statistical mechanics of regular solutions. He defines a 
regular solution as follows: “For the sake of simplicity we shall consider a 
mixture of two species ‘A’ and ‘B’. The extension to mixtures of more than 
two species will be obvious. In  our model of a regular solution we postu- 
late first the absence of long-range (electrostatic) forces between the 
molecules. Our second assumption is that the ‘A’ and ‘B’ molecules may 
be treated as spheres of a t  least approximately the same size. Thirdly, we 
assume that each molecule whether of ‘A’ or ‘B’ is directly surrounded by 
the same number r of other molecules. If the molecules are closely packed, 
r will have the value 12, but for our present purpose, there is no need to 
assign any specified value to r, provided its value is the same for the ‘A’ 
molecules as for the ‘B’ molecules. Fourthly, we assume that the liquids 
‘A’ and ‘B’ mix in all proportions without volume change. Our fifth 
assumption is that, for varying configurations (all of the same volume) of 
the system, the total potential energy may be regarded as the sum of 
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0.696 
0.401 
0.123 

contributions of each pair of molecules in direct contact. This assumption 
is slightly less drastic than assuming that the field of a given molecule does 
not extend beyond the further side of the next molecule. It is equivalent 
to ignoring differences between the field of an ‘A’ molecule and that of a 
‘B’ molecule at distances exceeding one molecular diameter. Obviously 
our first assumption is included in our fifth.” 

I should like to utter a good-natured complaint, first of all that he should 
adopt a term which I invented and defined in a certain way but should give 
it a different and restricted definition. He practically rules out all solu- 
tions whose components have significantly different molecular radii. It is, 
of course, easy to see why a “statistical mechanic” or “mechanical statisti- 
cian,” whichever one should be called, should wish to confine his attention 
to molecules of equal size. The problems of statistical distribution of 
checkers on an ordinary checker-board are very simple, but suppose that 
the two sets of checkers were not only of unequal size but required the 
squares on the board to change size to accommodate them as they move; 
the statistics of such a checker-board would be rather baffling. It would 
be still worse if one of the players would use sausages, corresponding to 
paraffin molecules, in place of checkers. 

Using the simple model he sets up it is, perhaps, not surprising that he 
should state that the volume fraction in the formula used by Scatchard and 
by myself “must be regarded as purely empirical.” Even if the derivation 
is not convincing, the experimental evidence is all in favor of the volume 
fraction occurring in the formula. Many examples of this will be given in 
the second edition of my monograph on “Solubility” now in press and I 
need give here only one sample. The molal volumes of liquid cadmium 
and lead at 432OC. are 14.2 cc. and 19.1 cc., respectively. The values of 
the excess partial molal free energy of cadmium in the actual over the ideal 
solution should give a constant, according to our equation, when divided 
by the square of the volume fraction, v i ,  rather than the mole fraction, 
N:, of the lead. The following brief table for widely different compositions 
shows that this is the case. 

1800 2790 
1760 2180 
1820 1960 

NI 

A much more important criticism by Guggenheim is to the effect that 
in the presence of unequal molecular fields the completely random distribu- 
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tion postulated in my definition of a regular solution cannot persist, but will 
give rise to some approach to the eventual segregation into two liquid 
phases as the temperature is lowered and the thermal agitation falls off. 
To take this tendency into account he defines and evaluates a certain 
quantity, 2, expressing departure from randomness. He then sets up a 
semi-empirical expression, 

22 = (N1 - $ ) ( N 2  - z:)e--2X/7kT 

which cleverly introduces the exponential, which is undoubtedly a step 
in the right direction. Here 2Xlr is the “work required to change a 1-1 
pair and a 2-2 pair into two 1-2 pairs, and N 1  and N2 denote the numbers of 
molecules. This takes account of the fact that there will be departures 
from random mixing favoring contact between molecules with low mutual 
potential energy.” 

On the basis of this formulation, he sets up the following expression, 
using our notation, with n denoting number of moles and N the Avogadro 
number, for the free energy of mixing, 

(The original contains an error in omitting to square the second nl + nz.) 
He points out the effect of values of 2XlrkT approaching unity and states 
that the “application by Hildebrand and others” of a formula omitting this 
factor “to two liquids that are incompletely miscible is particularly un- 
warranted.” His final conclusion is that “the semi-empirical formulae 
proposed by Hildebrand and other authors are inconsistent with the prin- 
ciples of statistical mechanics.” 

Now no one can deny that any differences in molecular field strength will 
introduce a tendency towards segregation which must prevent the partial 
molal entropy being strictly equal to its value in an ideal solution of the 
same composition. The only question is, are the departures sufficient to 
vitiate the simple conclusions one can draw from equating free and total 
energy. I am indebted to Professor Linus Pauling, with whom the matter 
was discussed, for suggesting a simple but striking test of the matter. We 
may calculate AF by means of the above equation, assuming it to be correct, 
and note the magnitude of the correcting term in the bracket. If we set 
r = 12, T = 300, and X = 1800 cals., we find that AF is 394 cals., a t  
n1 = n2 = 0.5, with the bracketed term 0.875 instead of 1.000, Le., the 
correction amounts to 12.5 per cent, although the deviation from Raoult’s 
law is large; the activity would be nearly 100 per cent greater than the 
ideal in the 50 mole per cent solution having this value of AF. Moreover, 
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the correction is greatest a t  this composition, falling off rapidly in either 
direction, e.g., it is but 4.5 per cent in a 10 mole per cent solution. The 
discrepancy for most systems in the range of interest would thus be at least 
as small as the other sources of uncertainty. The greatest effect would 
occur in the neighborhood of the critical solution temperature; an experi- 
mental measure of its magnitude will be possible by comparing the shape of 
the actual solubility curve in this region with its course elsewhere. This 
point was briefly discussed in the paper by myself and Wood. 

The analogous case of the critical behavior of a pure substance is en- 
lightening. If a gas is compressed a t  a temperature well below its critical 
temperature there is very little departure from the behavior of a perfect 
gas as the saturation pressure is reached, and even this can be well ac- 
counted for by a simple equation of state without introducing the picture 
of clustering, i.e., the molecular arrangement is random. The pure 
condensate also possesses a random molecular arrangement, unaffected 
by the presence of the gaseous phase. On the other hand, if the gas is 
compressed at, say, one degree below the critical temperature, the cluster- 
ing is clearly visible to the naked eye. The size of these clusters changes, 
however, very rapidly with temperature, in such a way as to indicate their 
practical disappearance not many degrees away from the critical point in 
either direction. If a 
little of Xz is dissolved in much XI, having a very different internal pres- 
sure, the molecules of the former will have a random distribution, in spite 
of the large difference in intermolecular potentials. If the temperature is 
well below the critical solution temperature, a second liquid phase will 
appear as more Xz is added in which XI is dilute in Xz and likewise ran- 
domly distributed. Only if the temperature is such that the system passes 
near the critical point as the composition is altered should there be much 
of the segregation due to an approximate balance of thermal energy and 
unequal molecular potentials. 

It seems to me probable, therefore, that the assumption of completely 
random mixing will be found to hold nearly enough for most solutions of 
non-polar substances to serve the purpose of usefully approximate calcula- 
tions. It may be doubted, further, whether statistical mechanics, in its 
present state of development, can be counted upon to give an answer to 
the question which is at once reliable and workable. Until so simple a 
problem as the entropy of vaporization shall receive a satisfactory statis- 
tical treatment, I am willing to run the risks of refusing to give up a method 
of attack which is supported by much experimental evidence simply because 
it is “inconsistent with the principles of statistical mechanics.” I feel 
constrained, however, to reject this last objection of Professor Guggenheim 
entirely, because the probability functions in our general equation, express- 

The behavior of a liquid solution should be similar. 
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ing the structure of the solution, include the effect of segregation upon this 
structure whenever it can be adequately expressed, either upon an experi- 
mental or a theoretical basis. Even the effects of unsymmetrical fields or 
departures from spherical shape2 can be expressed by suitable formulations 
of w. 

Space does not permit a review of a recent noteworthy formulation by 
Kirkwood (12) of a comprehensive statistical treatment of fluid mixtures, 
in which the rather artificial model of Guggenheim is avoided. 

Purported evidence for clustering in solutions of benzene with cyclo- 
hexane has been given by H. K. Ward (22) on the basis of x-ray scattering. 
Two distinct diffraction peaks shown by the solution corresponding to the 
pure liquids were interpreted as indicating a submicroscopic emulsion 
structure, regarded as the cause of the deviation of these solutions from 
Raoult’s law. This interpretation would be more convincing, first, if a 
pair of liquids had been chosen whose diffraction peaks are separated by a 
large enough interval to afford more room for an intermediate peak,- 
the difference was only 0.41 A.U.; second, if the deviation from Raoult’s 
law were not so small, in this case only 8.5 per cent at 79°C. for an equi- 
molal solution. The study should be repeated using a solution of non- 
polar liquids near their critical solution temperature. 

The scope of this discussion does not suffice to include other interesting 
thermodynamic aspects of solubility theory that suggest themselves, such 
as the effect of volume changes upon the entropy and free energy of mixing; 
I wish merely to indicate that the subject is by no means exhausted and 
that there remain various interesting fields for research, both theoretical 
and experimental. 
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